

Global Survey of Energy and Power-aware Job Scheduling and Resource Management in Supercomputing Centers

Siddhartha Jana siddhartha.jana@intel.com **Intel Corporation**

Gregory A. Koenig koenig@acm.org **Energy Efficient HPC Working Group**

Matthias Maiterth matthias.maiterth@intel.com **Intel Corporation**

Kevin T. Pedretti ktpedre@sandia.gov University of Bologna Sandia National Laboratory

Andrea Borghesi andrea.borghesi3@unibo.it

Andrea Bartolini andrea.bartolini@iis.ee.ethz.ch IIS, ETH Zurich

Bilel Hadri bilel.hadri@kaust.edu.sa **KAUST Supercomputing Lab**

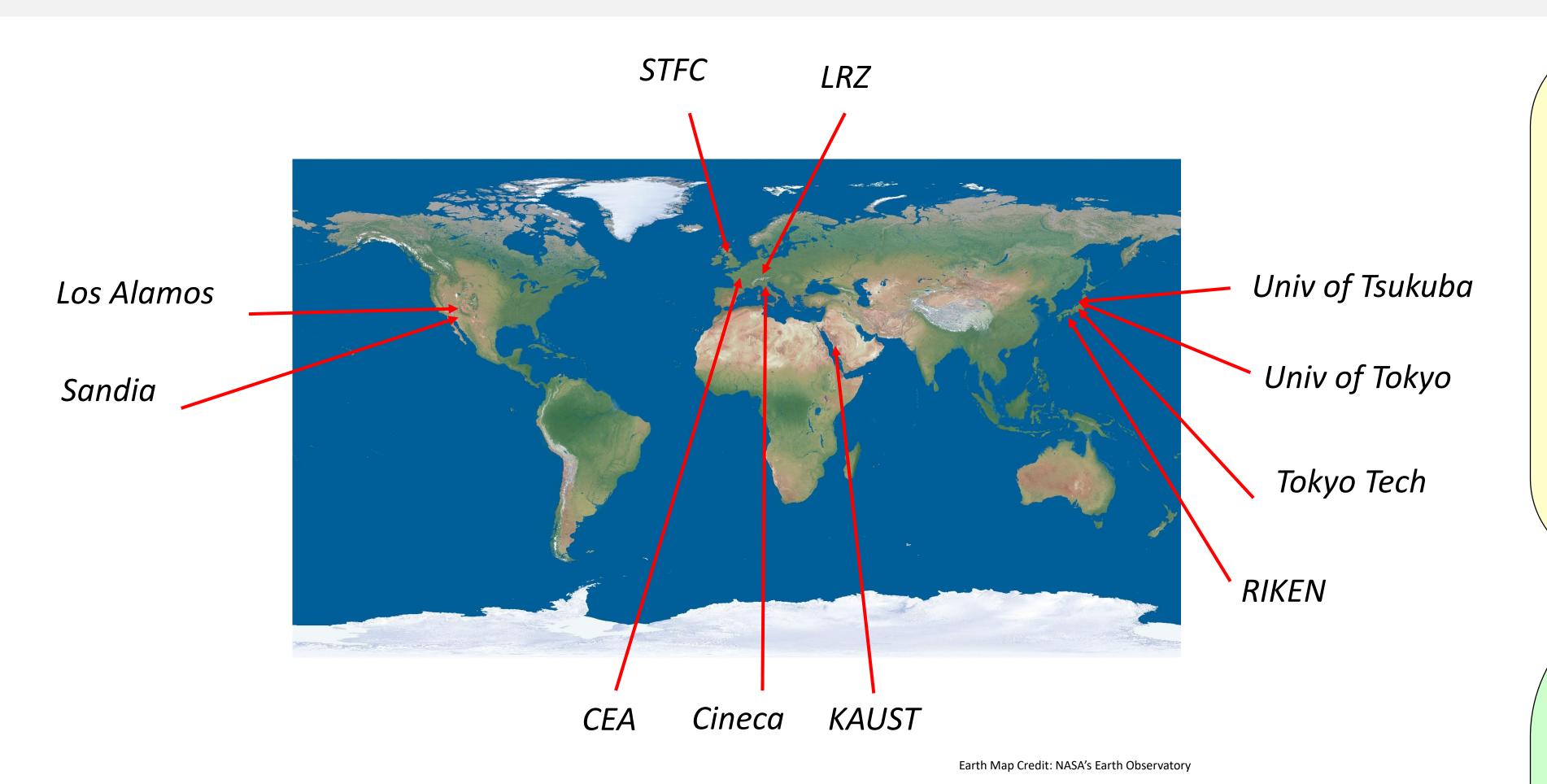
Natalie J. Bates natalie.jean.bates@gmail.com **Energy Efficient HPC Working Group**

System Design Challenges:

- Building systems for HPC under a Power Budget
- Peak power demands for future Exascale systems > 20MW
- Instantaneous power fluctuations: 8MW
- Microarchitecture improvements and high degree of parallelization not sufficient

Eight Survey Questions for the sites:

- 1. Motivation behind investing in Energy and Power Aware Job Scheduling and Runtime Management (EPA-JSRM)
- 2. Target infrastructure (e.g. site-wide power budget, cooling capacity, etc.)
- 3. Workload characteristics
- 4. Adopted design for EPA-JSRM
- 5. Implementation details for EPA-JSRM
- 6. Application/task level and topology-aware solutions
- 7. Results and challenges
- 8. Next steps including system procurement


Participating Sites:

- CEA (Alternative Energies and Atomic Energy Commission), France
- Cineca, Italy
- KAUST (King Abdullah University of Science and Technology), Saudi Arabia
- LRZ (Leibniz Supercomputing Centre), Germany
- Riken, Japan
- STFC (Science and Technology Facilities Council), United Kingdom
- Tokyo Institute of Technology, Japan
- University of Tokyo and University of Tsukuba (JCAHPC), Japan
- Los Alamos and Sandia National Laboratories (Trinity), **United States**

EPA-JSRM solutions depicted on the right have already been adopted - at least, in parts by these <u>sites.</u>

Next phase of JSRM roadmap:

- Continue working on more stable designs of system-wide frameworks (e.g. job schedulers) that allocate resources in a power-aware manner
- Invest in robust energy/power predictors that rely on statistical modeling
- Leverage power-capping mechanisms exposed by vendors

System Characteristics				
Organization	Site Power Budget	Site Cooling capacity	Major HPC System	System Power Draw
RIKEN	Up to 25 MW	Up to 40 MW	K computer (83,944 nodes)	Up to 15 MW
Tokyo Tech	Up to 5 MW	Up to 5 MW	TSUBAME2.5 (1400 nodes)	Up to 5 MW
CEA	Up to 10 MW	Up to 10 MW	Anticipated 25PF System in 2017	Up to 5 MW
KAUST	Up to 5 MW	Up to 5 MW	Shaheen 2 (6174 nodes)	Up to 5 MW
LRZ	Up to 10 MW	Up to 15 MW	SuperMUC Phase 1 / 2	Up to 5 MW
STFC	Up to 5 MW	Up to 5 MW	846 x dual SKX (128GB), 840 x KNL (96GB), 24x dual SKX (1TB)	**
LANL + SNL (Trinity)	Up to 20 MW	Up to 30 MW	Trinity (9436 HSW nodes + 9984 KNL nodes)	Up to 10 MW
Cineca	Up to 10 MW	**	Marconi (7500 nodes)	Up to 4 MW
JCAHPC	Up to 10 MW	**	Oakforest PACS (8208 nodes)	Up to 5 MW

** Information unavailable as of Oct 2017

Telemetry Monitoring solutions adopted:

- Sensors for monitoring energy and power
 - Both in-band as well as out-of-band
 - Direct real-time measurements
- Thermal-based sensors coupled with prediction models
- Model to indirectly derive power-based metrics
- Ongoing design of high-level APIs for end-users and resource managers
 - Energy and power monitoring
 - Feedback mechanisms
- Implementation of statistical approaches for prediction
 - Model based on job demand, size, length, etc.
 - Helps assign power budget to specific users

JSRM solutions adopted:

- Dynamic shutdown of jobs in response to limited power budget (Reactive approach)
 - Job selection based on job size, job length, etc. to shut down
- Automated reduction of node availability by the resource manager (Proactive approach)
 - Reduces the theoretical maximum power that can be consumed
 - Drop in system utilization
- Use of power-capping mechanisms supported by CPU and system vendors
 - Attempts to keep total power consumed below a specific limit
 - Power cap applied over a specific time-window (in order of minutes)
- Use system interface to trigger specific p-states (operating frequencies) supported by the platform
 - Design of portable APIs
- Design of system-wide frameworks (like job schedulers) that use static prediction models
- "Tagging" applications based on their power usage characteristics (feedback-driven approach)
 - Mapping of "tags" to performance metrics
 - Storage of historical records attained over past job runs
 - Use of tag-values for future budget assignment

The Energy Efficient HPC Working Group (EEHPC-WG) invites other supercomputing sites to participate in enhancing this survey. It welcomes questions, feedback, and comments from the entire HPC community.

This QR code alongside, points to the EEHPC-WG webpage (https://eehpcwg.llnl.gov/) that contains additional links to the white paper related to this poster, the feedback form, and other information on ways you can participate in this era of Energy and Power-aware computing.

